If you are a rational human being and you want to stay one, you should probably just forget that proteins reversibly acylate all the time. Most notably, acylations tend to occur to drive intracellular spatial stuff. Like your protein gets a terrible acylation on it that helps it migrate to the membrane where it now has activity while it's tethered there.
Typically to measure these awful things you start with a huge input then do some enrichment and cleave off your enrichment tag or something. Other times you over-express your protein in a system where the acylation is forced to occur but it has no biological function. Force that KRAS to go to the E.coli membrane expressed at completely nonphysiologically relevant concentrations, because that will help you characterize those mods while learning absolutely nothing else about what that system does.
OR you can and should do this?
This clever use of both a modified suspension trap and what/when/how you add isobaric tags allowed this group to characterize protein acylation in a complex system starting from as little as 20 ug of protein. It's a super cool new approach to get at very releavant protein modifications that are very very tough to do otherwise. 100% recommended.
No comments:
Post a Comment